
Environment-Driven Music
Recommendation Application
High-Level Design

Ryan Hamby (hambyr@umich.edu)
January 15, 2025

Purpose

This document outlines the general use-cases, scope, and design for a music recommendation
application that takes into account a user’s general environment, physiological factors, and
personal preferences. In turn, it lays a set of guidelines to craft low-level designs to describe
interactions with external APIs and data flows in more depth.

Overview

Music recommendation applications, models, plugins, curated lists, and general word-of-mouth
all generally disclude a critical piece of user data: the environment of the user. Not only is every
user’s preference in music style unique, but additionally their receptivity to genres, artists,
tempos, and even volumes changes when their surroundings change.

For example, this can include physiological data such as heart rate variability (HRV), heart rate,
blood sugar levels, breathing rate, and exercise data. By accentuating these data points with the
user’s surroundings such as ambient sound and light, time of day, geolocation, and baseline
personal preferences, it becomes apparent how vast the body of data to train ML models and
neural networks can grow.

Providing environment-based music recommendations can improve daily life challenges such as
cognition, stress management, sleep patterns, and job or school performance. Additionally, it
allows the user to fully disengage from the responsibility of picking a well-suited playlist to listen
to based on the situation. For many, this offload of responsibility is the only solution to having to
manage a burdensome background task that inhibits sustained focus patterns.

As for companies that own rights and licenses to stream songs, this application provides a layer
of detail and user compatibility that is incredibly difficult to generalize and predict at a large
scale. With properly-tuned integration points, platforms that support this application will benefit
from customer engagement, satisfaction, and retention.

mailto:hambyr@umich.edu

Functional Requirements

Users of this application can expect the following user patterns and milestones below.

Functional Requirement Description (User POV) Effort Priority

1
I should be able to play back a previous playlist up to 30 days later. In other
words, I should have access to a catalog of music I’ve listened to Low

P0

2
I should expect my music recommendations and generated catalogs/playlists
remain private to me Low

P0

3
I should be able to create, update, and delete a user preference profile of my
current favorite artists, genres, and playlists Med

P0

4
I should expect to receive new song recommendations with each refresh of
the application. High

P0

5
I should expect that new song recommendations have a TTL in which they
should not come up again until 30 days later Low

P1

6

I should expect a customizable amount of music that I am familiar with to
come up in my recommendations, in that I have added it to a playlist within
my account. Low

P1

7
I should expect the ordering of the songs to be relevant, but have the ability to
shuffle the playlist Med

P1

8 I should be able to change the genre of the music with a single button Low P1

9
I should be able to speed up or slow down the intensity of the songs chosen
with a single button Med

P1

10
I should be able to control the playback mechanism of my underlying music
platform (Spotify, Apple Music, etc) High

P1

11
I should have ambient sound volume affect the recommendations of songs
that are given to me High

P1

12
The application should store any Personal Health Data in compliance with
HIPAA Med

P2

13

I should have HRV data from my smart devices (Apple Watch, Fitbit, Garmin,
Oura ring, etc) sync to this application in near-real-time when the
measurements are taken. High

P2

14
The application should improve its personal customizations over time as it
learns from my data High

P2

Non-functional Requirements

In order to deliver quickly, the technical requirements were split accordingly.

Non-Functional Requirement Description Effort Priority

Performance

1
The system should process and display song recommendations within 300
milliseconds of a request. Low

P0

2
HRV data from connected devices should sync and process updates in
near-real-time, within 2 seconds of data arrival. High

P2

3
Ambient sound analysis should update recommendations in under 1 second after
changes in sound volume. Med

P1

Scalability

4
The system should support up to 10,000 concurrent users with no performance
degradation. Med

P0

5
The system should scale to handle a 50% increase in data ingestion during peak
usage periods (e.g., syncing multiple devices). Med

P0

Security

6
User preferences and playlist data should remain private and be encrypted at rest
and in transit (AES-256 and TLS 1.2+). Low

P0

7
Personal Health Data (PHI) must comply with HIPAA regulations, including
encryption and access auditing. Med

P2

8 All user authentication should include multi-factor authentication (MFA). Low P1

Availability

9
The system should achieve 99.9% uptime, ensuring that playlist playback and
catalog access are reliable. Med

P0

10
Playback control for Spotify/Apple Music should function with no more than 1
second of delay. Low

P1

Usability

11
The user interface should allow single-button actions for genre switching, intensity
adjustment, and shuffle functionality. Low

P1

12
The interface should provide clear feedback for actions like playlist creation or song
skipping within 200 milliseconds. Low

P1

Maintainability

13
The system should include at least 90% automated test coverage for all critical
components High

P0

14 New deployments should occur without downtime using rolling updates. Low P0

Privacy

15
The application should anonymize all user data stored for analytics or model
training. Low

P0

16
The application should allow users to export or delete their personal data in
compliance with GDPR. Med

P1

Personalization

17
Recommendations should incorporate user preferences (favorite artists, genres)
and learn dynamically from recent actions. High

P0

18 Playlist updates should reflect changes in user preferences within 24 hours. Low P0

Cost Optimization

19
The infrastructure cost of delivering recommendations and storing user data must
not exceed $20/month per user base of 10,000. Med

P0

20
The system should scale down resources automatically during periods of low
activity. Med

P0

Disaster Recovery

21
User data and playlists must be backed up daily, with recovery achievable within 1
hour of a failure. Low

P0

High-Level Architecture Diagram

Diagram created by Excalidraw

https://excalidraw.com/?#json=wgDwAU6PTBfr62fRQmXZi,ubgirnTPo3ovfuSRLlXAIA

Components

1.​ React Frontend Application
a.​ This framework excels at maintaining reusable components that can enable

complex user interfaces
b.​ The app will be built in react-native-web to enable extensibility in the case that

this app should be pivoted to focus on mobile development
2.​ AWS API Gateway (APIGW)

a.​ This service is a fully-managed API integration that allows seamless proxies to
AWS Lambda

b.​ API GW comes with default features within security, caching, custom domain
names, monitoring/analytics, and fits the cost structure that is necessary in early
releases of this product

3.​ AWS Lambda Backend
a.​ The Lambda backend serves as a low-cost platform for hosting the backend

service.This layer enables both synchronous and asynchronous workflows to run
in response.

b.​ Lambda can be optimized by enabling the function code with snapstart, and
transitioning to the autoscaling provisioned concurrency feature if user adoption
grows to support lower latencies

4.​ AWS DynamoDB (DDB)
a.​ In the early stages of development of this app, the best way to scale fast, efficient

retrieval will be by fetching in a non-relational DB.
b.​ DDB also has convenient integrations for caching including DAX.

5.​ AWS SageMaker
a.​ The AWS-internal platform for ML and AI model training enables easy integration

when training datasets based on user preferences.
6.​ Music Platform

a.​ The end goal is to integrate this with popular music streaming services such as
Spotify, Amazon Music, and Apple Music

Appendix

1.​ https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.01199/full

https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.01199/full

	Environment-Driven Music Recommendation Application High-Level Design
	
	Non-functional Requirements
	
	High-Level Architecture Diagram
	
	
	Components
	
	Appendix
	

